ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.10104
11
3

EMface: Detecting Hard Faces by Exploring Receptive Field Pyraminds

21 May 2021
Leilei Cao
Yao Xiao
Lin Xu
    CVBM
ArXivPDFHTML
Abstract

Scale variation is one of the most challenging problems in face detection. Modern face detectors employ feature pyramids to deal with scale variation. However, it might break the feature consistency across different scales of faces. In this paper, we propose a simple yet effective method named the receptive field pyramids (RFP) method to enhance the representation ability of feature pyramids. It can learn different receptive fields in each feature map adaptively based on the varying scales of detected faces. Empirical results on two face detection benchmark datasets, i.e., WIDER FACE and UFDD, demonstrate that our proposed method can accelerate the inference rate significantly while achieving state-of-the-art performance. The source code of our method is available at \url{https://github.com/emdata-ailab/EMface}.

View on arXiv
Comments on this paper