ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.10059
15
0

Model Compression

20 May 2021
Arhum Ishtiaq
Sara Mahmood
M. Anees
Neha Mumtaz
ArXivPDFHTML
Abstract

With time, machine learning models have increased in their scope, functionality and size. Consequently, the increased functionality and size of such models requires high-end hardware to both train and provide inference after the fact. This paper aims to explore the possibilities within the domain of model compression, discuss the efficiency of combining various levels of pruning and quantization, while proposing a quality measurement metric to objectively decide which combination is best in terms of minimizing the accuracy delta and maximizing the size reduction factor.

View on arXiv
Comments on this paper