ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.09495
13
6

Scalable Bayesian Approach for the DINA Q-matrix Estimation Combining Stochastic Optimization and Variational Inference

20 May 2021
Motonori Oka
Kensuke Okada
ArXivPDFHTML
Abstract

Diagnostic classification models (DCMs) offer statistical tools to inspect the fined-grained attribute of respondents' strengths and weaknesses. However, the diagnosis accuracy deteriorates when misspecification occurs in the predefined item-attribute relationship, which is encoded into a Q-matrix. To prevent such misspecification, methodologists have recently developed several Bayesian Q-matrix estimation methods for greater estimation flexibility. However, these methods become infeasible in the case of large-scale assessments with a large number of attributes and items. In this study, we focused on the deterministic inputs, noisy "and" gate (DINA) model and proposed a new framework for the Q-matrix estimation to find the Q-matrix with the maximum marginal likelihood. Based on this framework, we developed a scalable estimation algorithm for the DINA Q-matrix by constructing an iteration algorithm that utilizes stochastic optimization and variational inference. The simulation and empirical studies reveal that the proposed method achieves high-speed computation, good accuracy, and robustness to potential misspecifications, such as initial value's choices and hyperparameter settings. Thus, the proposed method can be a useful tool for estimating a Q-matrix in large-scale settings.

View on arXiv
Comments on this paper