ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08671
19
19

DID-eFed: Facilitating Federated Learning as a Service with Decentralized Identities

18 May 2021
Jiahui Geng
Neel Kanwal
M. Jaatun
Chunming Rong
ArXivPDFHTML
Abstract

We have entered the era of big data, and it is considered to be the "fuel" for the flourishing of artificial intelligence applications. The enactment of the EU General Data Protection Regulation (GDPR) raises concerns about individuals' privacy in big data. Federated learning (FL) emerges as a functional solution that can help build high-performance models shared among multiple parties while still complying with user privacy and data confidentiality requirements. Although FL has been intensively studied and used in real applications, there is still limited research related to its prospects and applications as a FLaaS (Federated Learning as a Service) to interested 3rd parties. In this paper, we present a FLaaS system: DID-eFed, where FL is facilitated by decentralized identities (DID) and a smart contract. DID enables a more flexible and credible decentralized access management in our system, while the smart contract offers a frictionless and less error-prone process. We describe particularly the scenario where our DID-eFed enables the FLaaS among hospitals and research institutions.

View on arXiv
Comments on this paper