ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08620
30
3

Adversarial Examples Detection with Bayesian Neural Network

18 May 2021
Yao Li
Tongyi Tang
Cho-Jui Hsieh
T. C. Lee
    GAN
    AAML
ArXivPDFHTML
Abstract

In this paper, we propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors and make it easier to simulate the output distribution of a deep neural network. With these observations, we propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection. Specifically, we study the distributional difference of hidden layer output between natural and adversarial examples, and propose to use the randomness of the Bayesian neural network to simulate hidden layer output distribution and leverage the distribution dispersion to detect adversarial examples. The advantage of a Bayesian neural network is that the output is stochastic while a deep neural network without random components does not have such characteristics. Empirical results on several benchmark datasets against popular attacks show that the proposed BATer outperforms the state-of-the-art detectors in adversarial example detection.

View on arXiv
Comments on this paper