24
2
v1v2v3 (latest)

Bregman algorithms for mixed-strategy generalized Nash equilibrium seeking in a class of mixed-integer games

Abstract

We consider the problem of computing a mixed-strategy generalized Nash equilibrium (MS-GNE) for a class of games where each agent has both continuous and integer decision variables. Specifically, we propose a novel Bregman forward-reflected-backward splitting and design distributed algorithms that exploit the problem structure. Technically, we prove convergence to a variational MS-GNE under mere monotonicity and Lipschitz continuity assumptions, which are typical of continuous GNE problems. Finally, we show the performance of our algorithms via numerical experiments.

View on arXiv
Comments on this paper