ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.04646
56
38
v1v2 (latest)

Deeply-Debiased Off-Policy Interval Estimation

10 May 2021
C. Shi
Runzhe Wan
Victor Chernozhukov
R. Song
    OffRL
ArXiv (abs)PDFHTMLGithub (9★)
Abstract

Off-policy evaluation learns a target policy's value with a historical dataset generated by a different behavior policy. In addition to a point estimate, many applications would benefit significantly from having a confidence interval (CI) that quantifies the uncertainty of the point estimate. In this paper, we propose a novel procedure to construct an efficient, robust, and flexible CI on a target policy's value. Our method is justified by theoretical results and numerical experiments. A Python implementation of the proposed procedure is available at https://github.com/RunzheStat/D2OPE.

View on arXiv
Comments on this paper