ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.02824
14
6

Activity-Aware Deep Cognitive Fatigue Assessment using Wearables

5 May 2021
Mohammad Arif Ul Alam
ArXivPDFHTML
Abstract

Cognitive fatigue has been a common problem among workers which has become an increasing global problem since the emergence of COVID-19 as a global pandemic. While existing multi-modal wearable sensors-aided automatic cognitive fatigue monitoring tools have focused on physical and physiological sensors (ECG, PPG, Actigraphy) analytic on specific group of people (say gamers, athletes, construction workers), activity-awareness is utmost importance due to its different responses on physiology in different person. In this paper, we propose a novel framework, Activity-Aware Recurrent Neural Network (\emph{AcRoNN}), that can generalize individual activity recognition and improve cognitive fatigue estimation significantly. We evaluate and compare our proposed method with state-of-art methods using one real-time collected dataset from 5 individuals and another publicly available dataset from 27 individuals achieving max. 19% improvement.

View on arXiv
Comments on this paper