ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.01836
17
8

Acoustic Scene Classification Using Multichannel Observation with Partially Missing Channels

5 May 2021
Keisuke Imoto
ArXivPDFHTML
Abstract

Sounds recorded with smartphones or IoT devices often have partially unreliable observations caused by clipping, wind noise, and completely missing parts due to microphone failure and packet loss in data transmission over the network. In this paper, we investigate the impact of the partially missing channels on the performance of acoustic scene classification using multichannel audio recordings, especially for a distributed microphone array. Missing observations cause not only losses of time-frequency and spatial information on sound sources but also a mismatch between a trained model and evaluation data. We thus investigate how a missing channel affects the performance of acoustic scene classification in detail. We also propose simple data augmentation methods for scene classification using multichannel observations with partially missing channels and evaluate the scene classification performance using the data augmentation methods.

View on arXiv
Comments on this paper