ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.01466
23
3

GraphTMT: Unsupervised Graph-based Topic Modeling from Video Transcripts

4 May 2021
Lukas Stappen
Jason Thies
Gerhard Johann Hagerer
Björn W. Schuller
Georg Groh
ArXivPDFHTML
Abstract

To unfold the tremendous amount of multimedia data uploaded daily to social media platforms, effective topic modeling techniques are needed. Existing work tends to apply topic models on written text datasets. In this paper, we propose a topic extractor on video transcripts. Exploiting neural word embeddings through graph-based clustering, we aim to improve usability and semantic coherence. Unlike most topic models, this approach works without knowing the true number of topics, which is important when no such assumption can or should be made. Experimental results on the real-life multimodal dataset MuSe-CaR demonstrates that our approach GraphTMT extracts coherent and meaningful topics and outperforms baseline methods. Furthermore, we successfully demonstrate the applicability of our approach on the popular Citysearch corpus.

View on arXiv
Comments on this paper