ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.01311
42
38

Inferring the Reader: Guiding Automated Story Generation with Commonsense Reasoning

4 May 2021
Xiangyu Peng
Siyan Li
Sarah Wiegreffe
Mark O. Riedl
    LRM
ArXivPDFHTML
Abstract

Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generating narratives over time, and critically lack basic commonsense reasoning. Furthermore, existing methods generally focus only on single-character stories, or fail to track characters at all. To improve the coherence of generated narratives and to expand the scope of character-centric narrative generation, we introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process with the option to model the interaction between multiple characters. We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings in three storytelling domains.

View on arXiv
Comments on this paper