ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.00681
23
12

S3Net: A Single Stream Structure for Depth Guided Image Relighting

3 May 2021
Hao-Hsiang Yang
Wei-Ting Chen
Sy-Yen Kuo
    MDE
ArXivPDFHTML
Abstract

Depth guided any-to-any image relighting aims to generate a relit image from the original image and corresponding depth maps to match the illumination setting of the given guided image and its depth map. To the best of our knowledge, this task is a new challenge that has not been addressed in the previous literature. To address this issue, we propose a deep learning-based neural Single Stream Structure network called S3Net for depth guided image relighting. This network is an encoder-decoder model. We concatenate all images and corresponding depth maps as the input and feed them into the model. The decoder part contains the attention module and the enhanced module to focus on the relighting-related regions in the guided images. Experiments performed on challenging benchmark show that the proposed model achieves the 3 rd highest SSIM in the NTIRE 2021 Depth Guided Any-to-any Relighting Challenge.

View on arXiv
Comments on this paper