ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14661
22
5

Random Embeddings and Linear Regression can Predict Protein Function

25 April 2021
Tianyu Lu
Alex X. Lu
Alan M. Moses
    SSL
ArXivPDFHTML
Abstract

Large self-supervised models pretrained on millions of protein sequences have recently gained popularity in generating embeddings of protein sequences for protein function prediction. However, the absence of random baselines makes it difficult to conclude whether pretraining has learned useful information for protein function prediction. Here we show that one-hot encoding and random embeddings, both of which do not require any pretraining, are strong baselines for protein function prediction across 14 diverse sequence-to-function tasks.

View on arXiv
Comments on this paper