ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14553
66
37

MarioNette: Self-Supervised Sprite Learning

29 April 2021
Dmitriy Smirnov
Michael Gharbi
Matthew Fisher
Vitor Campagnolo Guizilini
Alexei A. Efros
Justin Solomon
    SSL
    OCL
ArXivPDFHTML
Abstract

Artists and video game designers often construct 2D animations using libraries of sprites -- textured patches of objects and characters. We propose a deep learning approach that decomposes sprite-based video animations into a disentangled representation of recurring graphic elements in a self-supervised manner. By jointly learning a dictionary of possibly transparent patches and training a network that places them onto a canvas, we deconstruct sprite-based content into a sparse, consistent, and explicit representation that can be easily used in downstream tasks, like editing or analysis. Our framework offers a promising approach for discovering recurring visual patterns in image collections without supervision.

View on arXiv
Comments on this paper