ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.13629
25
15

Packet-Loss-Tolerant Split Inference for Delay-Sensitive Deep Learning in Lossy Wireless Networks

28 April 2021
Sohei Itahara
Takayuki Nishio
Koji Yamamoto
ArXivPDFHTML
Abstract

The distributed inference framework is an emerging technology for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In distributed inference, computational tasks are offloaded from the IoT device to other devices or the edge server via lossy IoT networks. However, narrow-band and lossy IoT networks cause non-negligible packet losses and retransmissions, resulting in non-negligible communication latency. This study solves the problem of the incremental retransmission latency caused by packet loss in a lossy IoT network. We propose a split inference with no retransmissions (SI-NR) method that achieves high accuracy without any retransmissions, even when packet loss occurs. In SI-NR, the key idea is to train the ML model by emulating the packet loss by a dropout method, which randomly drops the output of hidden units in a DNN layer. This enables the SI-NR system to obtain robustness against packet losses. Our ML experimental evaluation reveals that SI-NR obtains accurate predictions without packet retransmission at a packet loss rate of 60%.

View on arXiv
Comments on this paper