ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.13020
23
9

Simple yet Sharp Sensitivity Analysis for Unmeasured Confounding

27 April 2021
J. Peña
    CML
ArXivPDFHTML
Abstract

We present a method for assessing the sensitivity of the true causal effect to unmeasured confounding. The method requires the analyst to set two intuitive parameters. Otherwise, the method is assumption-free. The method returns an interval that contains the true causal effect, and whose bounds are arbitrarily sharp, i.e. practically attainable. We show experimentally that our bounds can be tighter than those obtained by the method of Ding and VanderWeele (2016a) which, moreover, requires to set one more parameter than our method. Finally, we extend our method to bound the natural direct and indirect effects when there are measured mediators and unmeasured exposure-outcome confounding.

View on arXiv
Comments on this paper