ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.12565
97
75

Mutual Contrastive Learning for Visual Representation Learning

26 April 2021
Chuanguang Yang
Zhulin An
Linhang Cai
Yongjun Xu
    VLM
    SSL
ArXivPDFHTML
Abstract

We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks. A crucial component of MCL is Interactive Contrastive Learning (ICL). Compared with vanilla contrastive learning, ICL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations for visual recognition tasks. We emphasize that the resulting MCL is conceptually simple yet empirically powerful. It is a generic framework that can be applied to both supervised and self-supervised representation learning. Experimental results on image classification and transfer learning to object detection show that MCL can lead to consistent performance gains, demonstrating that MCL can guide the network to generate better feature representations. Code is available at https://github.com/winycg/MCL.

View on arXiv
Comments on this paper