ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11843
118
7

One-Round Active Learning

23 April 2021
Tianhao Wang
Si-An Chen
R. Jia
ArXivPDFHTML
Abstract

In this work, we initiate the study of one-round active learning, which aims to select a subset of unlabeled data points that achieve the highest model performance after being labeled with only the information from initially labeled data points. The challenge of directly applying existing data selection criteria to the one-round setting is that they are not indicative of model performance when available labeled data is limited. We address the challenge by explicitly modeling the dependence of model performance on the dataset. Specifically, we propose DULO, a data-driven framework for one-round active learning, wherein we learn a model to predict the model performance for a given dataset and then leverage this model to guide the selection of unlabeled data. Our results demonstrate that DULO leads to the state-of-the-art performance on various active learning benchmarks in the one-round setting.

View on arXiv
Comments on this paper