ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11507
30
44

DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning

23 April 2021
Sheldon Fung
Xuequan Lu
Chao Zhang
Chang-Tsun Li
    SSL
ArXivPDFHTML
Abstract

Face deepfake detection has seen impressive results recently. Nearly all existing deep learning techniques for face deepfake detection are fully supervised and require labels during training. In this paper, we design a novel deepfake detection method via unsupervised contrastive learning. We first generate two different transformed versions of an image and feed them into two sequential sub-networks, i.e., an encoder and a projection head. The unsupervised training is achieved by maximizing the correspondence degree of the outputs of the projection head. To evaluate the detection performance of our unsupervised method, we further use the unsupervised features to train an efficient linear classification network. Extensive experiments show that our unsupervised learning method enables comparable detection performance to state-of-the-art supervised techniques, in both the intra- and inter-dataset settings. We also conduct ablation studies for our method.

View on arXiv
Comments on this paper