ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11103
44
10

Performance Evaluation of Adversarial Attacks: Discrepancies and Solutions

22 April 2021
Jing Wu
Mingyi Zhou
Ce Zhu
Yipeng Liu
Mehrtash Harandi
Li Li
    AAML
ArXivPDFHTML
Abstract

Recently, adversarial attack methods have been developed to challenge the robustness of machine learning models. However, mainstream evaluation criteria experience limitations, even yielding discrepancies among results under different settings. By examining various attack algorithms, including gradient-based and query-based attacks, we notice the lack of a consensus on a uniform standard for unbiased performance evaluation. Accordingly, we propose a Piece-wise Sampling Curving (PSC) toolkit to effectively address the aforementioned discrepancy, by generating a comprehensive comparison among adversaries in a given range. In addition, the PSC toolkit offers options for balancing the computational cost and evaluation effectiveness. Experimental results demonstrate our PSC toolkit presents comprehensive comparisons of attack algorithms, significantly reducing discrepancies in practice.

View on arXiv
Comments on this paper