ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10777
37
5

Viking: Variational Bayesian Variance Tracking

16 April 2021
Joseph de Vilmarest
Olivier Wintenberger
    BDL
    AI4TS
ArXivPDFHTML
Abstract

We consider the problem of time series forecasting in an adaptive setting. We focus on the inference of state-space models under unknown and potentially time-varying noise variances. We introduce an augmented model in which the variances are represented as auxiliary gaussian latent variables in a tracking mode. As variances are nonnegative, a transformation is chosen and applied to these latent variables. The inference relies on the online variational Bayesian methodology, which consists in minimizing a Kullback-Leibler divergence at each time step. We observe that the minimum of the Kullback-Leibler divergence is an extension of the Kalman filter taking into account the variance uncertainty. We design a novel algorithm, named Viking, using these optimal recursive updates. For auxiliary latent variables, we use second-order bounds whose optimum admit closed-form solutions. Experiments on synthetic data show that Viking behaves well and is robust to misspecification.

View on arXiv
Comments on this paper