45
2

Gradient Masked Federated Optimization

Abstract

Federated Averaging (FedAVG) has become the most popular federated learning algorithm due to its simplicity and low communication overhead. We use simple examples to show that FedAVG has the tendency to sew together the optima across the participating clients. These sewed optima exhibit poor generalization when used on a new client with new data distribution. Inspired by the invariance principles in (Arjovsky et al., 2019; Parascandolo et al., 2020), we focus on learning a model that is locally optimal across the different clients simultaneously. We propose a modification to FedAVG algorithm to include masked gradients (AND-mask from (Parascandolo et al., 2020)) across the clients and uses them to carry out an additional server model update. We show that this algorithm achieves better accuracy (out-of-distribution) than FedAVG, especially when the data is non-identically distributed across clients.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.