ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09771
42
66

GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments with a Centroidal Model

20 April 2021
Zhaoming Xie
Xingye Da
Buck Babich
Animesh Garg
M. van de Panne
ArXivPDFHTML
Abstract

Model-free reinforcement learning (RL) for legged locomotion commonly relies on a physics simulator that can accurately predict the behaviors of every degree of freedom of the robot. In contrast, approximate reduced-order models are commonly used for many model predictive control strategies. In this work we abandon the conventional use of high-fidelity dynamics models in RL and we instead seek to understand what can be achieved when using RL with a much simpler centroidal model when applied to quadrupedal locomotion. We show that RL-based control of the accelerations of a centroidal model is surprisingly effective, when combined with a quadratic program to realize the commanded actions via ground contact forces. It allows for a simple reward structure, reduced computational costs, and robust sim-to-real transfer. We show the generality of the method by demonstrating flat-terrain gaits, stepping-stone locomotion, two-legged in-place balance, balance beam locomotion, and direct sim-to-real transfer.

View on arXiv
Comments on this paper