ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08775
25
2

Dynamically Addressing Unseen Rumor via Continual Learning

18 April 2021
Nayeon Lee
Andrea Madotto
Yejin Bang
Pascale Fung
ArXivPDFHTML
Abstract

Rumors are often associated with newly emerging events, thus, an ability to deal with unseen rumors is crucial for a rumor veracity classification model. Previous works address this issue by improving the model's generalizability, with an assumption that the model will stay unchanged even after the new outbreak of an event. In this work, we propose an alternative solution to continuously update the model in accordance with the dynamics of rumor domain creations. The biggest technical challenge associated with this new approach is the catastrophic forgetting of previous learnings due to new learnings. We adopt continual learning strategies that control the new learnings to avoid catastrophic forgetting and propose an additional strategy that can jointly be used to strengthen the forgetting alleviation.

View on arXiv
Comments on this paper