ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08445
16
39

Joint Passage Ranking for Diverse Multi-Answer Retrieval

17 April 2021
Sewon Min
Kenton Lee
Ming-Wei Chang
Kristina Toutanova
Hannaneh Hajishirzi
ArXivPDFHTML
Abstract

We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a given question. This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer. In this paper, we introduce JPR, the first joint passage retrieval model for multi-answer retrieval. JPR makes use of an autoregressive reranker that selects a sequence of passages, each conditioned on previously selected passages. JPR is trained to select passages that cover new answers at each timestep and uses a tree-decoding algorithm to enable flexibility in the degree of diversity. Compared to prior approaches, JPR achieves significantly better answer coverage on three multi-answer datasets. When combined with downstream question answering, the improved retrieval enables larger answer generation models since they need to consider fewer passages, establishing a new state-of-the-art.

View on arXiv
Comments on this paper