Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.07411
Cited By
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
15 April 2021
Dieter Brughmans
Pieter Leyman
David Martens
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NICE: An Algorithm for Nearest Instance Counterfactual Explanations"
40 / 40 papers shown
Title
Enhancing Metabolic Syndrome Prediction with Hybrid Data Balancing and Counterfactuals
Sanyam Paresh Shah
Abdullah Mamun
Shovito Barua Soumma
Hassan Ghasemzadeh
128
0
0
09 Apr 2025
GraphXAIN: Narratives to Explain Graph Neural Networks
Mateusz Cedro
David Martens
110
0
0
04 Nov 2024
Distributional Counterfactual Explanations With Optimal Transport
Lei You
Lele Cao
Mattias Nilsson
Bo Zhao
Lei Lei
OT
OffRL
93
1
0
23 Jan 2024
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
64
33
0
09 Jul 2021
Understanding Consumer Preferences for Explanations Generated by XAI Algorithms
Yanou Ramon
T. Vermeire
Olivier Toubia
David Martens
Theodoros Evgeniou
58
10
0
06 Jul 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
58
146
0
26 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
103
423
0
15 Feb 2021
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
66
63
0
05 Jan 2021
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
44
100
0
10 Nov 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
58
172
0
08 Oct 2020
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
44
91
0
28 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
119
86
0
23 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
66
146
0
26 May 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
57
257
0
23 Apr 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
41
71
0
21 Jan 2020
Explainability Fact Sheets: A Framework for Systematic Assessment of Explainable Approaches
Kacper Sokol
Peter A. Flach
XAI
82
302
0
11 Dec 2019
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
89
205
0
06 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
93
88
0
04 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,251
0
22 Oct 2019
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
58
187
0
22 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
79
491
0
09 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
61
384
0
03 Jul 2019
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
77
83
0
31 May 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
91
321
0
27 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
106
1,015
0
19 May 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
84
1,009
0
26 Feb 2019
Explaining Models: An Empirical Study of How Explanations Impact Fairness Judgment
Jonathan Dodge
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Casey Dugan
FaML
49
126
0
23 Jan 2019
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
211
1,177
0
27 Jun 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
45
244
0
09 Mar 2018
On Cognitive Preferences and the Plausibility of Rule-based Models
Johannes Furnkranz
Tomáš Kliegr
Heiko Paulheim
LRM
58
70
0
04 Mar 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
105
589
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
120
3,938
0
06 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
112
101
0
22 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
197
1,837
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,348
0
01 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
941
21,815
0
22 May 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
345
378
0
01 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
376
3,776
0
28 Feb 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
995
16,931
0
16 Feb 2016
1