ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07411
  4. Cited By
NICE: An Algorithm for Nearest Instance Counterfactual Explanations

NICE: An Algorithm for Nearest Instance Counterfactual Explanations

15 April 2021
Dieter Brughmans
Pieter Leyman
David Martens
ArXivPDFHTML

Papers citing "NICE: An Algorithm for Nearest Instance Counterfactual Explanations"

40 / 40 papers shown
Title
Enhancing Metabolic Syndrome Prediction with Hybrid Data Balancing and Counterfactuals
Enhancing Metabolic Syndrome Prediction with Hybrid Data Balancing and Counterfactuals
Sanyam Paresh Shah
Abdullah Mamun
Shovito Barua Soumma
Hassan Ghasemzadeh
128
0
0
09 Apr 2025
GraphXAIN: Narratives to Explain Graph Neural Networks
GraphXAIN: Narratives to Explain Graph Neural Networks
Mateusz Cedro
David Martens
110
0
0
04 Nov 2024
Distributional Counterfactual Explanations With Optimal Transport
Distributional Counterfactual Explanations With Optimal Transport
Lei You
Lele Cao
Mattias Nilsson
Bo Zhao
Lei Lei
OT
OffRL
93
1
0
23 Jan 2024
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
64
33
0
09 Jul 2021
Understanding Consumer Preferences for Explanations Generated by XAI
  Algorithms
Understanding Consumer Preferences for Explanations Generated by XAI Algorithms
Yanou Ramon
T. Vermeire
Olivier Toubia
David Martens
Theodoros Evgeniou
58
10
0
06 Jul 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to
  Rectify in the Evaluation of Counterfactual XAI Techniques
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
58
146
0
26 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
  Stakeholder Perspective on XAI and a Conceptual Model Guiding
  Interdisciplinary XAI Research
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
103
423
0
15 Feb 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
66
63
0
05 Jan 2021
Towards Unifying Feature Attribution and Counterfactual Explanations:
  Different Means to the Same End
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
44
100
0
10 Nov 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
58
172
0
08 Oct 2020
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
44
91
0
28 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
119
86
0
23 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for
  Generating Counterfactuals for Explainable AI (XAI)
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
66
146
0
26 May 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
57
257
0
23 Apr 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual
  Approach
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
41
71
0
21 Jan 2020
Explainability Fact Sheets: A Framework for Systematic Assessment of
  Explainable Approaches
Explainability Fact Sheets: A Framework for Systematic Assessment of Explainable Approaches
Kacper Sokol
Peter A. Flach
XAI
82
302
0
11 Dec 2019
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
89
205
0
06 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
93
88
0
04 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,251
0
22 Oct 2019
Towards Realistic Individual Recourse and Actionable Explanations in
  Black-Box Decision Making Systems
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
58
187
0
22 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
79
491
0
09 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
61
384
0
03 Jul 2019
Model Agnostic Contrastive Explanations for Structured Data
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
77
83
0
31 May 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
91
321
0
27 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
106
1,015
0
19 May 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
84
1,009
0
26 Feb 2019
Explaining Models: An Empirical Study of How Explanations Impact
  Fairness Judgment
Explaining Models: An Empirical Study of How Explanations Impact Fairness Judgment
Jonathan Dodge
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Casey Dugan
FaML
49
126
0
23 Jan 2019
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
211
1,177
0
27 Jun 2018
The Challenge of Crafting Intelligible Intelligence
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
45
244
0
09 Mar 2018
On Cognitive Preferences and the Plausibility of Rule-based Models
On Cognitive Preferences and the Plausibility of Rule-based Models
Johannes Furnkranz
Tomáš Kliegr
Heiko Paulheim
LRM
58
70
0
04 Mar 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
105
589
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
120
3,938
0
06 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine
  Learning
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
112
101
0
22 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
197
1,837
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,348
0
01 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
941
21,815
0
22 May 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
  Comparison
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
345
378
0
01 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
376
3,776
0
28 Feb 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
995
16,931
0
16 Feb 2016
1