ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06819
34
7

Short-term bus travel time prediction for transfer synchronization with intelligent uncertainty handling

14 April 2021
N. Petersen
Anders Parslov
Filipe Rodrigues
ArXivPDFHTML
Abstract

This paper presents two novel approaches for uncertainty estimation adapted and extended for the multi-link bus travel time problem. The uncertainty is modeled directly as part of recurrent artificial neural networks, but using two fundamentally different approaches: one based on Deep Quantile Regression (DQR) and the other on Bayesian Recurrent Neural Networks (BRNN). Both models predict multiple time steps into the future, but handle the time-dependent uncertainty estimation differently. We present a sampling technique in order to aggregate quantile estimates for link level travel time to yield the multi-link travel time distribution needed for a vehicle to travel from its current position to a specific downstream stop point or transfer site. To motivate the relevance of uncertainty-aware models in the domain, we focus on the connection assurance application as a case study: An expert system to determine whether a bus driver should hold and wait for a connecting service, or break the connection and reduce its own delay. Our results show that the DQR-model performs overall best for the 80%, 90% and 95% prediction intervals, both for a 15 minute time horizon into the future (t + 1), but also for the 30 and 45 minutes time horizon (t + 2 and t + 3), with a constant, but very small underestimation of the uncertainty interval (1-4 pp.). However, we also show, that the BRNN model still can outperform the DQR for specific cases. Lastly, we demonstrate how a simple decision support system can take advantage of our uncertainty-aware travel time models to prioritize the difference in travel time uncertainty for bus holding at strategic points, thus reducing the introduced delay for the connection assurance application.

View on arXiv
Comments on this paper