ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06719
9
1

Sentence Embeddings by Ensemble Distillation

14 April 2021
Fredrik Carlsson Magnus Sahlgren
ArXivPDFHTML
Abstract

This paper contributes a new State Of The Art (SOTA) for Semantic Textual Similarity (STS). We compare and combine a number of recently proposed sentence embedding methods for STS, and propose a novel and simple ensemble knowledge distillation scheme that improves on previous approaches. Our experiments demonstrate that a model trained to learn the average embedding space from multiple ensemble students outperforms all the other individual models with high robustness. Utilizing our distillation method in combination with previous methods, we significantly improve on the SOTA unsupervised STS, and by proper hyperparameter tuning of previous methods we improve the supervised SOTA scores.

View on arXiv
Comments on this paper