ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06384
18
17

Optimal scaling of random-walk Metropolis algorithms using Bayesian large-sample asymptotics

13 April 2021
Sebastian M. Schmon
Philippe Gagnon
ArXivPDFHTML
Abstract

High-dimensional limit theorems have been shown useful to derive tuning rules for finding the optimal scaling in random-walk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive: the target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical applications. In this paper, we shed some light on optimal-scaling problems from a different perspective, namely a large-sample one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameter-dimension-dependent tuning guidelines. The proposed guidelines are consistent with previous ones when the target density is close to having a product form, and the results highlight that the correlation structure has to be accounted for to avoid performance deterioration if that is not the case, while justifying the use of a natural (asymptotically exact) approximation to the correlation matrix that can be employed for the very first algorithm run.

View on arXiv
Comments on this paper