ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05971
17
4

Learning Multi-modal Information for Robust Light Field Depth Estimation

13 April 2021
Yongri Piao
Xinxin Ji
Miao Zhang
Yukun Zhang
    MDE
ArXivPDFHTML
Abstract

Light field data has been demonstrated to facilitate the depth estimation task. Most learning-based methods estimate the depth infor-mation from EPI or sub-aperture images, while less methods pay attention to the focal stack. Existing learning-based depth estimation methods from the focal stack lead to suboptimal performance because of the defocus blur. In this paper, we propose a multi-modal learning method for robust light field depth estimation. We first excavate the internal spatial correlation by designing a context reasoning unit which separately extracts comprehensive contextual information from the focal stack and RGB images. Then we integrate the contextual information by exploiting a attention-guide cross-modal fusion module. Extensive experiments demonstrate that our method achieves superior performance than existing representative methods on two light field datasets. Moreover, visual results on a mobile phone dataset show that our method can be widely used in daily life.

View on arXiv
Comments on this paper