ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05376
17
98

Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer

12 April 2021
Tianwei Lin
Zhuoqi Ma
Fu Li
Dongliang He
Xin Li
Errui Ding
N. Wang
Jie Li
Xinbo Gao
ArXivPDFHTML
Abstract

Artistic style transfer aims at migrating the style from an example image to a content image. Currently, optimization-based methods have achieved great stylization quality, but expensive time cost restricts their practical applications. Meanwhile, feed-forward methods still fail to synthesize complex style, especially when holistic global and local patterns exist. Inspired by the common painting process of drawing a draft and revising the details, we introduce a novel feed-forward method named Laplacian Pyramid Network (LapStyle). LapStyle first transfers global style patterns in low-resolution via a Drafting Network. It then revises the local details in high-resolution via a Revision Network, which hallucinates a residual image according to the draft and the image textures extracted by Laplacian filtering. Higher resolution details can be easily generated by stacking Revision Networks with multiple Laplacian pyramid levels. The final stylized image is obtained by aggregating outputs of all pyramid levels. %We also introduce a patch discriminator to better learn local patterns adversarially. Experiments demonstrate that our method can synthesize high quality stylized images in real time, where holistic style patterns are properly transferred.

View on arXiv
Comments on this paper