ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05087
25
10

Learning from Censored and Dependent Data: The case of Linear Dynamics

11 April 2021
Orestis Plevrakis
ArXivPDFHTML
Abstract

Observations from dynamical systems often exhibit irregularities, such as censoring, where values are recorded only if they fall within a certain range. Censoring is ubiquitous in practice, due to saturating sensors, limit-of-detection effects, and image-frame effects. In light of recent developments on learning linear dynamical systems (LDSs), and on censored statistics with independent data, we revisit the decades-old problem of learning an LDS, from censored observations (Lee and Maddala (1985); Zeger and Brookmeyer (1986)). Here, the learner observes the state xt∈Rdx_t \in \mathbb{R}^dxt​∈Rd if and only if xtx_txt​ belongs to some set St⊆RdS_t \subseteq \mathbb{R}^dSt​⊆Rd. We develop the first computationally and statistically efficient algorithm for learning the system, assuming only oracle access to the sets StS_tSt​. Our algorithm, Stochastic Online Newton with Switching Gradients, is a novel second-order method that builds on the Online Newton Step (ONS) of Hazan et al. (2007). Our Switching-Gradient scheme does not always use (stochastic) gradients of the function we want to optimize, which we call "censor-aware" function. Instead, in each iteration, it performs a simple test to decide whether to use the censor-aware, or another "censor-oblivious" function, for getting a stochastic gradient. In our analysis, we consider a "generic" Online Newton method, which uses arbitrary vectors instead of gradients, and we prove an error-bound for it. This can be used to appropriately design these vectors, leading to our Switching-Gradient scheme. This framework significantly deviates from the recent long line of works on censored statistics (e.g., Daskalakis et al. (2018); Kontonis et al. (2019); Daskalakis et al. (2019)), which apply Stochastic Gradient Descent (SGD), and their analysis reduces to establishing conditions for off-the-shelf SGD-bounds.

View on arXiv
Comments on this paper