ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04987
19
30

AutoGL: A Library for Automated Graph Learning

11 April 2021
Ziwei Zhang
Yijian Qin
Zeyang Zhang
Chaoyu Guan
Jie Cai
Heng Chang
Jiyan Jiang
Haoyang Li
Yi Qin
Beini Xie
Yang Yao
Yipeng Zhang
Xin Eric Wang
Wenwu Zhu
ArXivPDFHTML
Abstract

Recent years have witnessed an upsurge in research interests and applications of machine learning on graphs. However, manually designing the optimal machine learning algorithms for different graph datasets and tasks is inflexible, labor-intensive, and requires expert knowledge, limiting its adaptivity and applicability. Automated machine learning (AutoML) on graphs, aiming to automatically design the optimal machine learning algorithm for a given graph dataset and task, has received considerable attention. However, none of the existing libraries can fully support AutoML on graphs. To fill this gap, we present Automated Graph Learning (AutoGL), the first dedicated library for automated machine learning on graphs. AutoGL is open-source, easy to use, and flexible to be extended. Specifically, we propose a three-layer architecture, consisting of backends to interface with devices, a complete automated graph learning pipeline, and supported graph applications. The automated machine learning pipeline further contains five functional modules: auto feature engineering, neural architecture search, hyper-parameter optimization, model training, and auto ensemble, covering the majority of existing AutoML methods on graphs. For each module, we provide numerous state-of-the-art methods and flexible base classes and APIs, which allow easy usage and customization. We further provide experimental results to showcase the usage of our AutoGL library. We also present AutoGL-light, a lightweight version of AutoGL to facilitate customizing pipelines and enriching applications, as well as benchmarks for graph neural architecture search. The codes of AutoGL are publicly available at https://github.com/THUMNLab/AutoGL.

View on arXiv
Comments on this paper