ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04797
48
19
v1v2v3v4v5 (latest)

Coupling streaming AI and HPC ensembles to achieve 100-1000x faster biomolecular simulations

10 April 2021
Alexander Brace
I. Yakushin
Heng Ma
Anda Trifan
T. Munson
Ian Foster
A. Ramanathan
Hyungro Lee
Matteo Turilli
S. Jha
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Machine learning (ML)-based steering can improve the performance of ensemble-based simulations by allowing for online selection of more scientifically meaningful computations. We present DeepDriveMD, a framework for ML-driven steering of scientific simulations that we have used to achieve orders-of-magnitude improvements in molecular dynamics (MD) performance via effective coupling of ML and HPC on large parallel computers. We discuss the design of DeepDriveMD and characterize its performance. We demonstrate that DeepDriveMD can achieve between 100-1000x acceleration for protein folding simulations relative to other methods, as measured by the amount of simulated time performed, while covering the same conformational landscape as quantified by the states sampled during a simulation. Experiments are performed on leadership-class platforms on up to 1020 nodes. The results establish DeepDriveMD as a high-performance framework for ML-driven HPC simulation scenarios, that supports diverse MD simulation and ML back-ends, and which enables new scientific insights by improving the length and time scales accessible with current computing capacity.

View on arXiv
Comments on this paper