ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04646
16
5

DeepSITH: Efficient Learning via Decomposition of What and When Across Time Scales

9 April 2021
Brandon G. Jacques
Zoran Tiganj
Marc W Howard
P. Sederberg
ArXivPDFHTML
Abstract

Extracting temporal relationships over a range of scales is a hallmark of human perception and cognition -- and thus it is a critical feature of machine learning applied to real-world problems. Neural networks are either plagued by the exploding/vanishing gradient problem in recurrent neural networks (RNNs) or must adjust their parameters to learn the relevant time scales (e.g., in LSTMs). This paper introduces DeepSITH, a network comprising biologically-inspired Scale-Invariant Temporal History (SITH) modules in series with dense connections between layers. SITH modules respond to their inputs with a geometrically-spaced set of time constants, enabling the DeepSITH network to learn problems along a continuum of time-scales. We compare DeepSITH to LSTMs and other recent RNNs on several time series prediction and decoding tasks. DeepSITH achieves state-of-the-art performance on these problems.

View on arXiv
Comments on this paper