ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02633
25
20

Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation

6 April 2021
F. Barbato
Marco Toldo
Umberto Michieli
Pietro Zanuttigh
ArXivPDFHTML
Abstract

Deep convolutional neural networks for semantic segmentation achieve outstanding accuracy, however they also have a couple of major drawbacks: first, they do not generalize well to distributions slightly different from the one of the training data; second, they require a huge amount of labeled data for their optimization. In this paper, we introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation. In particular, for this purpose we jointly enforce a clustering objective, a perpendicularity constraint and a norm alignment goal on the feature vectors corresponding to source and target samples. Additionally, we propose a novel measure able to capture the relative efficacy of an adaptation strategy compared to supervised training. We verify the effectiveness of such methods in the autonomous driving setting achieving state-of-the-art results in multiple synthetic-to-real road scenes benchmarks.

View on arXiv
Comments on this paper