This paper is concerned with the estimation of the partial derivatives of a probability density function of directional data on the -dimensional torus within the local thresholding framework. The estimators here introduced are built by means of the toroidal needlets, a class of wavelets characterized by excellent concentration properties in both the real and the harmonic domains. In particular, we discuss the convergence rates of the -risks for these estimators, investigating on their minimax properties and proving their optimality over a scale of Besov spaces, here taken as nonparametric regularity function spaces.
View on arXiv