ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.01716
22
12

Quaternion Factorization Machines: A Lightweight Solution to Intricate Feature Interaction Modelling

5 April 2021
Tong Chen
Hongzhi Yin
Xiangliang Zhang
Zi Huang
Yang Wang
Meng Wang
ArXivPDFHTML
Abstract

As a well-established approach, factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering. With the prominent development of deep neural networks (DNNs), there is a recent and ongoing trend of enhancing the expressiveness of FM-based models with DNNs. However, though better results are obtained with DNN-based FM variants, such performance gain is paid off by an enormous amount (usually millions) of excessive model parameters on top of the plain FM. Consequently, the heavy parameterization impedes the real-life practicality of those deep models, especially efficient deployment on resource-constrained IoT and edge devices. In this paper, we move beyond the traditional real space where most deep FM-based models are defined, and seek solutions from quaternion representations within the hypercomplex space. Specifically, we propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM), which are two novel lightweight and memory-efficient quaternion-valued models for sparse predictive analytics. By introducing a brand new take on FM-based models with the notion of quaternion algebra, our models not only enable expressive inter-component feature interactions, but also significantly reduce the parameter size due to lower degrees of freedom in the hypercomplex Hamilton product compared with real-valued matrix multiplication. Extensive experimental results on three large-scale datasets demonstrate that QFM achieves 4.36% performance improvement over the plain FM without introducing any extra parameters, while QNFM outperforms all baselines with up to two magnitudes' parameter size reduction in comparison to state-of-the-art peer methods.

View on arXiv
Comments on this paper