ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00931
11
28

Assem-VC: Realistic Voice Conversion by Assembling Modern Speech Synthesis Techniques

2 April 2021
Kang-Wook Kim
Seung-won Park
Junhyeok Lee
Myun-chul Joe
ArXivPDFHTML
Abstract

Recent works on voice conversion (VC) focus on preserving the rhythm and the intonation as well as the linguistic content. To preserve these features from the source, we decompose current non-parallel VC systems into two encoders and one decoder. We analyze each module with several experiments and reassemble the best components to propose Assem-VC, a new state-of-the-art any-to-many non-parallel VC system. We also examine that PPG and Cotatron features are speaker-dependent, and attempt to remove speaker identity with adversarial training. Code and audio samples are available at https://github.com/mindslab-ai/assem-vc.

View on arXiv
Comments on this paper