ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00065
16
20

Force-and-moment-based Model Predictive Control for Achieving Highly Dynamic Locomotion on Bipedal Robots

31 March 2021
Junheng Li
G. Alcan
ArXivPDFHTML
Abstract

In this paper, we propose a novel framework on force-and-moment-based Model Predictive Control (MPC) for dynamic legged robots. Specifically, we present a formulation of MPC designed for 10 degree-of-freedom (DoF) bipedal robots using simplified rigid body dynamics with input forces and moments. This MPC controller will calculate the optimal inputs applied to the robot, including 3-D forces and 2-D moments at each foot. These desired inputs will then be generated by mapping these forces and moments to motor torques of 5 actuators on each leg. We evaluate our proposed control design on physical simulation of a 10 degree-of-freedom (DoF) bipedal robot. The robot can achieve fast walking speed up to 1.6 m/s on rough terrain, with accurate velocity tracking. With the same control framework, our proposed approach can achieve a wide range of dynamic motions including walking, hopping, and running using the same set of control parameters.

View on arXiv
Comments on this paper