ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.17261
22
1

Video-Specific Autoencoders for Exploring, Editing and Transmitting Videos

31 March 2021
Kevin Wang
Deva Ramanan
Aayush Bansal
    VGen
ArXivPDFHTML
Abstract

We study video-specific autoencoders that allow a human user to explore, edit, and efficiently transmit videos. Prior work has independently looked at these problems (and sub-problems) and proposed different formulations. In this work, we train a simple autoencoder (from scratch) on multiple frames of a specific video. We observe: (1) latent codes learned by a video-specific autoencoder capture spatial and temporal properties of that video; and (2) autoencoders can project out-of-sample inputs onto the video-specific manifold. These two properties allow us to explore, edit, and efficiently transmit a video using one learned representation. For e.g., linear operations on latent codes allow users to visualize the contents of a video. Associating latent codes of a video and manifold projection enables users to make desired edits. Interpolating latent codes and manifold projection allows the transmission of sparse low-res frames over a network.

View on arXiv
Comments on this paper