ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16773
19
8

PAUL: Procrustean Autoencoder for Unsupervised Lifting

31 March 2021
Chaoyang Wang
Simon Lucey
ArXivPDFHTML
Abstract

Recent success in casting Non-rigid Structure from Motion (NRSfM) as an unsupervised deep learning problem has raised fundamental questions about what novelty in NRSfM prior could the deep learning offer. In this paper we advocate for a 3D deep auto-encoder framework to be used explicitly as the NRSfM prior. The framework is unique as: (i) it learns the 3D auto-encoder weights solely from 2D projected measurements, and (ii) it is Procrustean in that it jointly resolves the unknown rigid pose for each shape instance. We refer to this architecture as a Procustean Autoencoder for Unsupervised Lifting (PAUL), and demonstrate state-of-the-art performance across a number of benchmarks in comparison to recent innovations such as Deep NRSfM and C3PDO.

View on arXiv
Comments on this paper