ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16516
19
25

Recognizing Actions in Videos from Unseen Viewpoints

30 March 2021
A. Piergiovanni
Michael S. Ryoo
ArXivPDFHTML
Abstract

Standard methods for video recognition use large CNNs designed to capture spatio-temporal data. However, training these models requires a large amount of labeled training data, containing a wide variety of actions, scenes, settings and camera viewpoints. In this paper, we show that current convolutional neural network models are unable to recognize actions from camera viewpoints not present in their training data (i.e., unseen view action recognition). To address this, we develop approaches based on 3D representations and introduce a new geometric convolutional layer that can learn viewpoint invariant representations. Further, we introduce a new, challenging dataset for unseen view recognition and show the approaches ability to learn viewpoint invariant representations.

View on arXiv
Comments on this paper