ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16355
11
1

Nonlinear Weighted Directed Acyclic Graph and A Priori Estimates for Neural Networks

30 March 2021
Yuqing Li
Tao Luo
Chao Ma
    CML
ArXivPDFHTML
Abstract

In an attempt to better understand structural benefits and generalization power of deep neural networks, we firstly present a novel graph theoretical formulation of neural network models, including fully connected, residual network (ResNet) and densely connected networks (DenseNet). Secondly, we extend the error analysis of the population risk for two layer network \cite{ew2019prioriTwo} and ResNet \cite{e2019prioriRes} to DenseNet, and show further that for neural networks satisfying certain mild conditions, similar estimates can be obtained. These estimates are a priori in nature since they depend sorely on the information prior to the training process, in particular, the bounds for the estimation errors are independent of the input dimension.

View on arXiv
Comments on this paper