ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15960
20
12

Demonstrating Analog Inference on the BrainScaleS-2 Mobile System

29 March 2021
Yannik Stradmann
Sebastian Billaudelle
O. Breitwieser
F. Ebert
Arne Emmel
D. Husmann
Joscha Ilmberger
Eric Müller
Philipp Spilger
Johannes Weis
Johannes Schemmel
ArXivPDFHTML
Abstract

We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of 192uJ for the ASIC and achieve a classification time of 276us per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7±{\pm}±0.7)% at (14.0±{\pm}±1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform.

View on arXiv
Comments on this paper