ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14717
19
7

Cyclic Defense GAN Against Speech Adversarial Attacks

26 March 2021
Mohammad Esmaeilpour
P. Cardinal
Alessandro Lameiras Koerich
    AAML
ArXivPDFHTML
Abstract

This paper proposes a new defense approach for counteracting state-of-the-art white and black-box adversarial attack algorithms. Our approach fits into the implicit reactive defense algorithm category since it does not directly manipulate the potentially malicious input signals. Instead, it reconstructs a similar signal with a synthesized spectrogram using a cyclic generative adversarial network. This cyclic framework helps to yield a stable generative model. Finally, we feed the reconstructed signal into the speech-to-text model for transcription. The conducted experiments on targeted and non-targeted adversarial attacks developed for attacking DeepSpeech, Kaldi, and Lingvo models demonstrate the proposed defense's effectiveness in adverse scenarios.

View on arXiv
Comments on this paper