ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.11879
11
39

Real-time End-to-End Federated Learning: An Automotive Case Study

22 March 2021
Hongyi Zhang
J. Bosch
Helena Holmström Olsson
    FedML
ArXivPDFHTML
Abstract

With the development and the increasing interests in ML/DL fields, companies are eager to apply Machine Learning/Deep Learning approaches to increase service quality and customer experience. Federated Learning was implemented as an effective model training method for distributing and accelerating time-consuming model training while protecting user data privacy. However, common Federated Learning approaches, on the other hand, use a synchronous protocol to conduct model aggregation, which is inflexible and unable to adapt to rapidly changing environments and heterogeneous hardware settings in real-world scenarios. In this paper, we present an approach to real-time end-to-end Federated Learning combined with a novel asynchronous model aggregation protocol. Our method is validated in an industrial use case in the automotive domain, focusing on steering wheel angle prediction for autonomous driving. Our findings show that asynchronous Federated Learning can significantly improve the prediction performance of local edge models while maintaining the same level of accuracy as centralized machine learning. Furthermore, by using a sliding training window, the approach can minimize communication overhead, accelerate model training speed and consume real-time streaming data, proving high efficiency when deploying ML/DL components to heterogeneous real-world embedded systems.

View on arXiv
Comments on this paper