ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.10003
90
36
v1v2 (latest)

COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data for AI-driven COVID-19 analytics

18 March 2021
Ashkan Ebadi
Pengcheng Xi
Alexander MacLean
Stéphane Tremblay
S. Kohli
Alexander Wong
ArXiv (abs)PDFHTML
Abstract

The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. Apart from the global health crises, the pandemic has also caused significant economic and financial difficulties and socio-physiological implications. Effective screening, triage, treatment planning, and prognostication of outcome plays a key role in controlling the pandemic. Recent studies have highlighted the role of point-of-care ultrasound imaging for COVID-19 screening and prognosis, particularly given that it is non-invasive, globally available, and easy-to-sanitize. Motivated by these attributes and the promise of artificial intelligence tools to aid clinicians, we introduce COVIDx-US, an open-access benchmark dataset of COVID-19 related ultrasound imaging data that is the largest of its kind. The COVIDx-US dataset was curated from multiple sources and consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases. The dataset was systematically processed and validated specifically for the purpose of building and evaluating artificial intelligence algorithms and models.

View on arXiv
Comments on this paper