ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09159
36
10

Learning to Shape Rewards using a Game of Two Partners

16 March 2021
D. Mguni
Taher Jafferjee
Jianhong Wang
Nicolas Perez Nieves
Tianpei Yang
Matthew E. Taylor
Wenbin Song
Feifei Tong
Hui Chen
Jiangcheng Zhu
Jun Wang
Yaodong Yang
ArXivPDFHTML
Abstract

Reward shaping (RS) is a powerful method in reinforcement learning (RL) for overcoming the problem of sparse or uninformative rewards. However, RS typically relies on manually engineered shaping-reward functions whose construction is time-consuming and error-prone. It also requires domain knowledge which runs contrary to the goal of autonomous learning. We introduce Reinforcement Learning Optimising Shaping Algorithm (ROSA), an automated reward shaping framework in which the shaping-reward function is constructed in a Markov game between two agents. A reward-shaping agent (Shaper) uses switching controls to determine which states to add shaping rewards for more efficient learning while the other agent (Controller) learns the optimal policy for the task using these shaped rewards. We prove that ROSA, which adopts existing RL algorithms, learns to construct a shaping-reward function that is beneficial to the task thus ensuring efficient convergence to high performance policies. We demonstrate ROSA's properties in three didactic experiments and show its superior performance against state-of-the-art RS algorithms in challenging sparse reward environments.

View on arXiv
Comments on this paper