ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.08160
30
25

DMN4: Few-shot Learning via Discriminative Mutual Nearest Neighbor Neural Network

15 March 2021
Yang Liu
Tu Zheng
Jie Song
Deng Cai
Xiaofei He
ArXivPDFHTML
Abstract

Few-shot learning (FSL) aims to classify images under low-data regimes, where the conventional pooled global feature is likely to lose useful local characteristics. Recent work has achieved promising performances by using deep descriptors. They generally take all deep descriptors from neural networks into consideration while ignoring that some of them are useless in classification due to their limited receptive field, e.g., task-irrelevant descriptors could be misleading and multiple aggregative descriptors from background clutter could even overwhelm the object's presence. In this paper, we argue that a Mutual Nearest Neighbor (MNN) relation should be established to explicitly select the query descriptors that are most relevant to each task and discard less relevant ones from aggregative clutters in FSL. Specifically, we propose Discriminative Mutual Nearest Neighbor Neural Network (DMN4) for FSL. Extensive experiments demonstrate that our method outperforms the existing state-of-the-arts on both fine-grained and generalized datasets.

View on arXiv
Comments on this paper